Wireless Dependable IoT/M2M for Disaster Rescue and Healthcare – Reliable Machine Centric Sensing and Controlling

Masaki Noi, Satoshi Seimiya

Abstract

Wireless body area network (BAN) has been researched and developed for ubiquitous and remote medicine and its international standard IEEE802.15.6 was established in February, 2012. In order to find missing victims and sense their vital sign at disaster spots, highly reliable and secure, i.e. dependable BAN can be applicable to a body of robots, cars, UAVs (Unmanned Aerial Vehicle) like drones as well as a human body for dependable machine to machine (M2M) sensing and controlling. Such a M2M network can be called a ‘BAN of Things’ like Internet of Things (IoT). Around disaster areas unexpected obstacles and complicated radio propagation tend to prevent accurate ranging and positioning, and reliable vital data sensing. To perform precise localization and robust data communications by BAN, dependable radio technologies such as ultra wide band (UWB) radio, array antenna and error control codes in physical layer must be jointly optimized with MAC, Network, and application layers. Even after BAN has been developed and standardized globally, regulatory science must adopt it to guarantee the safety, reliability and security and to be compliant to regulations. This paper will introduce research and development, standard and regulatory compliance of dependable wireless BAN for disaster rescue and medical healthcare using UWB ranging and communication. The joint Japan and New Zealand project on remote sensing and controlling multiple UAVs to locate casualties in natural disasters such as earthquakes will be also introduced. The research has two objectives, one being to use UAVs to locate people under rubble, the other to collect information that is contained within the BANs those people are wearing. The new IEEE802.15 international standard group of dependable wireless networks IEEE802.15 IG-Dependability has been chaired by the author(Prof. Ryuji Kohno).

Relevant Publications in Geoinformatics & Geostatistics: An Overview