Research Article
Al-Dharob MH, Kökce A, La
Abstract
Both Au/n-4H SiC (MS) and Au/(Zn doped-PVA)/n-4H SiC (MPS) structures were fabricated by using the same wafer. This effect of modified PVA interlayer doped by Zn nanoparticles on main electrical parameters, such as ideality factor (n), barrier height (BH), series resistance (Rs), and rectification rate (RR) were evaluated and investigated by using the current-voltage (I-V) data measurements. Furthermore, the energy dependent profile of surface states (Nss) was also obtained from these data by taking into account voltage dependent BH and n. The sources of observed negative capacitance (NC) at the accumulation region for the MS and MPS structures were also evaluated. From capacitance-voltage (C-V) and conductancevoltage (G/ω-V) data measurements, the profile of Rs and Nss were also evaluated and investigated as voltage dependent at high frequency (1 MHz) by using Nicollian-Brews technique. These results explain how is the effect of modified PVA interfacial layer doped by Zn nanoparticles on increasing in the RR and decreasing of the values of Rs, Nss, and leakage current of MPS structure as compared with MS structure. Thus, we can say that this increase in the performance of the MPS structure is a result of the grown of the (Zn-doped PVA) layer between Au and n-4H SiC.