Synthesis and Electrochemistry of Dimetallocene-Containing Titanocenyl (IV) Complexes

E. Erasmus

Abstract

A series of dimetallocenyl dicyclopentadienyl titanium (IV) complexes of the from [(C5H5)2TiIV((C5H4)MII(C5H5))2] with M=Fe, Ru and Os were synthesized by treatment of dicyclopentadienyltitanium (IV) dichloride (titanocene dichloride) with the corresponding metallocenyllithium. The metallocenyllithium was obtained by treatment of the corresponding metallocene (ferrocene (Fc), ruthenocene (Rc) and osmocene (Oc)) with either t-buthyllithium or n-buthyllithium. The electrochemistry of the dimetallocenyl dicyclopentadienyl titanium (IV) complexes was studied by cyclic voltammetry, linear sweep voltammetry and Oster Young square wave voltammetry. The titanocenyl group showed quasi-reversible to irreversible electrochemistry with the peak anodic potential (Epc vs FcH/FcH+) of the titanocenyl group dependent on the atomic electronegativity of the metallocenyl ligand (Fe (cFe=1.64), Ru (cRu=1.42), Os (coeOs=1.52)). The metallocenyl groups (Fc, Rc and Oc) showed quasi-reversibility and the quasi-formal reduction potential, E01, was also dependent on atomic electronegativity of the metal of the metallocenyl ligand.

Relevant Publications in Journal of Physical Chemistry & Biophysics