Simple and Exact Additivity of Atomic and Ionic Radii in Various Types of Bonds in Small as Well as Large Molecules

Raji Heyrovska

Abstract

The nature of the chemical bond has intrigued many a mind. Bohr’s theory of the hydrogen atom, which celebrated its centennial recently, gave the correct value but a negative sign for the energy. As this would imply that the energy of the Universe, which consists of 70% hydrogen, is negative, the author was dissatisfied with it. So she proposed a modified approach to the problem, which showed that the energy is positive. Moreover, she found that the Bohr radius is divided into two Golden sections pertaining to the electron and proton. This idea cascaded into the finding that all bond lengths in small as well as large molecules are simply exact sums of the appropriate atomic and or Golden ratio based ionic radii of adjacent atoms or ions. Over the years, this has proved to be correct for various types of bonds, including hydrogen bonds, bonds in graphite and in benzene dimers.

Relevant Publications in Structural Chemistry & Crystallography Communication