Setting Mechanisms of an Acidic Premixed Calcium Phosphate Cement

Jonas Åberg, Johanna

Abstract

Premixed calcium phosphate cements (pCPC), where glycerol is used instead of water as mixing liquid, present better handling characteristics than water-based cements. However, the setting mechanisms of pCPC have not been described thoroughly. The aim of this paper is to increase the understanding of the setting mechanism of pCPC. The investigated cement starts to set when glycerol is exchanged with water via diffusion of glycerol out to the surrounding body fluid and water into the material. To better understand the water-glycerol exchange a method was developed where the setting depth of the cement was measured over time. Thermo gravimetric analysis (TGA) was used to determine the liquid exchange rate during setting. To study the influence of temperature on the crystalline end product, pCPC and water-mixed calcium phosphate cement (wCPC) were set at different temperatures and analyzed with X-ray diffraction (XRD). The setting depth measurements showed that the set layer of the pCPC grew with a speed proportional to t0.51 at 37°C. TGA results furthermore showed that less than 10% of the glycerol remained after 16 hours. Setting of pCPC at different temperatures showed that mainly brushite was formed at 5°C, a mixture of brushite and monetite at 21°C and mainly monetite at 37°C. It furthermore showed that brushite was the main phase after setting of wCPC, but some monetite was present in these cements. The study presents a new method for evaluation of pCPC that increases the understanding of their setting mechanism. Furthermore, the XRD results indicate that storage at 5°C could improve the shelf life of acidic pCPC.

Relevant Publications in Bioceramics Developments and Applications