Semi-analytical Study of Blood Flow through a Prosthesis Inserted in an Affected Blood Vessel

Guy Richard Kol and Paul Wo

Abstract

In this work, a two dimensional model of the flow is considered, with focus on effects of the nonlinearity coefficient of elasticity, variation of the radius and the Young modulus. The model described characterizes the blood flow consecutively in aneurysms, stenoses and prostheses. We obtain in the three cases that the increase in the coeffcient of nonlinearity decreases the axial fluid velocity, and weakly influence the radial velocity. The velocity of the flow remains parabolic, decrease in the aneurys-mal bag, and increase in the stenosis when the severity of blood vessels diseases varies. We found that aneurysms of small widths present high peaks of wall shear stress, and so predisposes to the formation of thrombus. Finally, we determine the maximum value of elasticity that helps to enhance the performance of prosthesis

Relevant Publications in Journal of Physical Chemistry & Biophysics