Responses of Endophytic Microbial Community in Masson Pine to the Early Stage of Pine Wilt Disease

Yang Li, ·Qingzhou Y

Abstract

The pnewood nematode (PWN), Bursaphelenchus xylophilus ( B. xylophilus), is one of the causal agents of the pine wilt disease (PWD). Early diagnosis of PWDis ofa great significance, as effective treatment at the late course of this disease does not exist. At present, microbial flora has been suggested to play a role in PWD. However, whether microbial flora can be the diagnosis index of early PWD is unknown. In this study, we applied 10 healthy wild adult Pinus massoniana ( P. massoniana) to analyzed the role of endophytic microbial communities in the early infection of B. xylophilus By using PCR-DGGE, we found the bacterial structure in P. massoniana was significantly different after inoculation with B. xylophilus. The bacterial bands of No.8, 16, 11 and 12 bacteria were correlated with the time of nematode infection, which indicates that these four bacteria may have potential in the prevention or treatment of PWD. In addition, the alterations of bacterial flora structure in individual P. massoniana were similar by analyzing NMDS. With the multidimensional calibration of the microbial community, we found that the population structures of endophytic bacteria are markedly different between the early 30 days and the 40th day. Therefore, by identifying the endophytic bacteria structure in P. massonian a , we are able to diagnose the PWD in the first 40 days before the onset of symptoms. Early diagnosis of PWD would provide valuable time for the treatment of the disease. Our study showed significant data to prove that endophytic bacteria are a novel index for the early diagnosis of PWD.

Relevant Publications in Research & Reviews: Journal of Botanical Sciences