Reforming and Desulphurization of Syngas by 3D-printed Catalyst Carriers

Research Article

Chen KY, Chen YY and Wei WCJ

Abstract

Sulfur and CH4 are two important ingredients in synthesized gaseous fuels and they must be removed before use in solid oxide fuel cells. This study compares the gasification of mixtures of waste paper and plastics and with that for wood. The produced fuel (syngas), which is rich in H2, CH4 and CO, is reformed and desulfurized using stacks of 3D-printed catalyst carriers, which are made using thee ceramic powders (ZnO, θ-Al2O3, and CaCO3). The pyramid-shaped carrier features high porosity (50%) and good strength (ca. 6 MPa). It carries fine-grain Ni+CeO2 catalyst and increases the retention of the syngas. The performance of the thee carriers is determined with respect to the gas content (including H2, CH4, CO and H2S) in the syngas.

Relevant Publications in Innovative Energy & Research