Recent Trends in Soil Temperature Under Arid Agro-Ecosystem in Kuwait as a Prelude to the Gulf Region: Can Root-Zone Soil Temperature Be Predicted from Ambient Air Temperature?

Abdirashid AE, Hassan Al-Dasht

Abstract

Soil temperature plays an essential role in many ecological processes. Deserts ecosystems, like Kuwait, are extremely sensitive to changes in environmental conditions. Although large number of studies has been done worldwide to investigate responses of various ecosystems to rising air temperatures, less is known about changes in subsurface temperatures, and potential impacts on various ecosystem functions and services. In this study, we used eight recent years (2007-2014) of soil temperature data from different depths (0-5, 5-10, 10-20, 20-50, 50-100 cm depth increments) in three stations in the state of Kuwait: Abdali, Sulaibya and wafra. Air temperature data were obtained from Kuwait’s International Airport (KIA) meteorological station. Analysis of variance (ANOVA) revealed statistically significant variations in soil temperatures with depth in all locations. Another interesting feature of our analysis was the highly linear relationship between air temperatures and soil temperatures up to 0.5 m below soil surface when fitted by linear regression equations with R2 as high as 0.99. These findings shed an important light on whether or not ambient air temperature can be used as a reliable predictor of active root-zone (0-0.5 m) soil temperature for which there is a general lack of long term data availability. Consequently, this paper contributes to the body of knowledge about the potential of soil temperatures being estimated from air temperature in Kuwait and can be applied to other countries in the Gulf region with similar soil and climatic conditions.

Relevant Publications in Journal of Earth Science & Climatic Change