Prediction of Self-Compacting Rubberized Concrete Mechanical and Fresh Properties using Taguchi Method

Emara MA, Eid FM, Nasser AA

Abstract

The effect and optimization of using self-compacting rubberized concrete was investigated by using Taguchi method. Design of experiment was performed via orthogonal array to accommodate four factors with four levels. These factors were the percentage of fine rubber, coarse rubber, fly ash and viscocrete in the concrete mix. The signal-to-noise (S/N) ratio and the analysis of variance (ANOVA) were employed to study the performance characteristics of self-compacting rubberized concrete (SCRC). Rubberized concrete can be improved using the concrete proportioned as self-compacting concrete. The results indicate that there was a reduction in the strength with increasing rubber content but there was an increase in impact resistance. However, the replacement of 10% of coarse aggregate with coarse rubber gave more strength than that of zero rubber mix by 124% at 90 days. Replacement of 20% of both fine and coarse aggregates with fine and coarse rubber respectively, increased impact resistance by 453% compared to the corresponding SCRC control mix.

Relevant Publications in Civil & Environmental Engineering