Peculiarities of Light-Matter Coupling in Imperfect Lattice of Coupled Microresonators

Rumyantsev V, Fedorov S and Sy

Abstract

We study exciton-like electromagnetic excitations in non-ideal microcavity lattice with the use of the virtual crystal approximation. The effect of point defects (vacancies) on the excitation spectrum is being numerically modeled for a quasi-two-dimensional non-ideal binary microcavity supercrystal. The adopted approach permits to obtain the dispersion dependence of collective excitation frequencies and the energy gap width on defect concentrations in a microcavity lattice. Based on the representations of the ideal photonic structures, the non-ideal polaritonic crystal, which is a set of spatially ordered cavities containing atomic clusters, is considered too. The analytical expressions for polaritonic frequencies, effective mass and group velocities, as a function of corresponding quantum dots and vacancies concentrations is obtained.

Relevant Publications in Journal of Lasers, Optics & Photonics