Online Tuning of Power System Stabilizers using Fuzzy Logic Network with Fuzzy C-Means Clustering

Hajizade Kanafgorabi M and

Abstract

Power system stabilizers (PSS) have been widely used to enhance damping due to the electromechanical low frequency oscillations occurrence in power systems. In this paper, a new method is used for the online tuning of parameters of conventional power system stabilizers (CPSS) using fuzzy logic. Fuzzy logic enables mathematical modeling and computation of some nonlinear parameters of the system, which are usually, derived empirically by utilization of expert knowledge rules. Various literatures has shown that fuzzy logic controller is one of the most useful methods for expert knowledge utilization. This type of controller is adaptive in nature and can be used successfully as a power system stabilizer. The design of fuzzy logic controllers is mainly based on fuzzy rules and input/output membership functions. Simple and efficient clustering algorithms allow data classification in distinct groups using distance and/or similarity functions. In the present paper, the optimum generation of fuzzy rules base using Fuzzy C-means (FCM) clustering technique is used. In fact, data are classified and the number of fuzzy rules which depends on convergence radius is determined. Finally, the performance of proposed FCM controller is compared with that of conventional controller. The active power, reactive power and bus voltages used as inputs to the fuzzy logic network based power system stabilizer and the parameters of the optimum stabilizer , i.e. gain factor as well as time constants of the lead/lag compensator, are the outputs of the proposed system. The design method has been successfully implemented on a single machine power system connected to an infinite bus over various operating conditions.

Relevant Publications in Electrical & Electronic Systems