Research Article
Tejpreet Chadha and John. C
Abstract
The widespread use of β-lactam antibiotics has resulted in the global emergence of antibiotic-resistant bacterial strains. Multidrug resistant isolates are now more difficult to treat due to multiple intrinsic and acquired mechanisms of drug resistance that operate simultaneously in a bacterial cell. Motility is associated with virulence that contributes to multidrug resistance. The current analysis has shown that natural pattern of distribution of Ambler (molecular) classes of β-lactamases (A, B, C, D) varied among motile and non-motile nosocomial pathogens. Our results revealed that the relative abundance of class A β-lactamases was highest in bacterial species that are non-motile. However, the relative abundance of class C β-lactamases was mostly same for both motile and non-motile bacterial species. The class D β-lactamases was found highest in bacterial species that are non-motile. However, based upon the total number of sequences checked, the prevalence of class B β-lactamases dominated in pathogens that are motile when compared to other Ambler classes of β-lactamases. Our results imply that occurrence of class B β-lactamases may prove advantageous to motile bacterial species. This may also suggest that the gain of class B β-lactamases genes during the course of their evolution may have contributed to their virulence.