Research Article
Okayasu M, Sakai H and Tana
Abstract
The material and mechanical properties of samurai swords (Japanese swords), made using a traditional steelmaking technology (tatara), are investigated experimentally. The quality of these swords appears to be low because of the presence of a large number of inclusions, including oxide- and phosphorus-based structures; however, their mechanical properties are relatively good because of their fine-grained structure and high residual stress. The swords consist of several carbon steels, with a fine microstructural formation being obtained in the sharp edge of the sword (knife) as a result of the forging process. There is high residual compressive stress in the thick edge of the sword (mandrel), caused by bending due to the martensitic phase transition in the sharp edge. The carbon content of the sword varies depending on region: the sharp edge is found to have 0.55% C, which is more than twice the amount in the thick edge. The Vickers hardness and tensile strength in the sharp edge region are about 6 and 1 GPa, respectively, which are about three times higher than the corresponding values in the other regions of the sword. The hardness in the sharp edge region is almost the same as in a conventional carbon steel (Fe-C0.55) produced by presentday steelmaking technology. The tensile strength of the sharp edge of the sword is relatively high, but is slightly lower than that of the conventional Fe-C0.55 steel, despite the fine-grained structure and high residual compressive stress in the sharp edge region. This is caused by the presence of various inclusions in the sword.