Research Article
Ioanna Hariskos, Tobias Rub
Abstract
The coccolithophorid alga Emiliania huxleyi produces micro-structured calcite particles, which are called coccoliths. Due to their unique and sophisticated structure, coccoliths are highly promising for different industrial applications, such as paper manufacturing, color and lacquer preparation. The mass production of coccoliths requires the evaluation of optimum cultivation conditions. This study investigates the impact of varying irradiance (10-1500 μmol m-2 s-1) on growth and chlorophyll a content of two calcifying strains CCMP371 and RCC1216 as well as on the non-calcifying strain RCC1217 (haploid form of RCC1217). The light kinetics contradicts the popular opinion, that E. huxleyi is an extraordinarily light tolerating alga in general. Photoinhibition was already observed at irradiance >500 μmol m-2 s-1 in the case of the calcifying strains. Furthermore, light requirements to grow at maximum growth rate, as well as thresholds towards photoinhibition were considerably different between calcifying and non-calcifying strains. The haplont required significantly higher irradiance to reach maximum μspec (>200 μmol m-2 s-1), while being much more tolerant to towards photoinhibition, which occurred not until 800 μmol m-2 s-1. Furthermore, a novel method was proposed to allow for the estimation of chlorophyll a content from flow cytometry data. By comprising an Advanced Fluorescence Ratio (AFLR), which considers culture heterogeneity, this method enables for simple chlorophyll a estimation also in older cultures of calcifying Emiliania huxleyi, which tend to build agglomerates.