Invariant Tensor Product

He H

Abstract

In this paper, we define invariant tensor product and study invariant tensor products associated with discrete series representations. Let G(V1)×G(V2) be a pair of classical groups diagonally embedded in G(V1⊕V2). Suppose that dimV1<dimV2. Let π be a discrete series representation of G(V1⊕V2). We prove that the functor π ⊗G(V1) *maps unitary representations of G(V1) to unitary representations of G(V2). Here we enlarge the definition of unitary representations by including the zero dimensional representation.

Relevant Publications in Generalized Lie Theory and Applications