Research Article
Ming Lu, Julian P. Whiteleg
Abstract
It is widely believed that discovery of specific, sensitive and reliable tumor biomarkers can improve the treatment of cancer. The goal of this study was to develop a novel fractionation protocol targeting hydrophobic proteins as possible cancer cell membrane biomarkers. Hydrophobic proteins of breast cancer tissues and cell lines were enriched by polymeric reverse phase columns. The retained proteins were eluted and digested for peptide identification by nano-liquid chromatography with tandem mass spectrometry using a hybrid linear ion-trap Orbitrap. Hundreds of proteins were identified from each of these three specimens: tumors, normal breast tissue, and breast cancer cell lines. Many of the identified proteins defined key cellular functions. Protein profiles of cancer and normal tissues from the same patient were systematically examined and compared. Stem cell markers were overexpressed in triple negative breast cancer (TNBC) compared with non-TNBC samples. Because breast cancer stem cells are known to be resistant to radiation and chemotherapy, and can be the source of metastasis frequently seen in patients with TNBC, our study may provide evidence of molecules promoting the aggressiveness of TNBC. The initial results obtained using a combination of hydrophobic fractionation and nano-LC mass spectrometry analysis of these proteins appear promising in the discovery of potential cancer biomarkers. When sufficiently refined, this approach may prove useful for early detection and better treatment of breast cancer.