Genetic Variability, Heritability and Genetic Advance for Yield and its Related Traits in Rainfed Lowland Rice (Oryza sativa L.) Genotypes at Fogera and Pawe, Ethiopia

Tefera Abebe, Sentayehu Alam

Abstract

The present study consists of 36 rice genotypes that were evaluated at two locations, namely Fogera and Pawe to study genetic variability, heritability and genetic advance for grain yield and 13 yield associated traits. The experiment was conducted using 6 × 6 simple lattice design across two locations with two replications during the 2015/2016 main cropping season. The combined analysis of variance revealed statistically significant differences (p<0.05) indicating the existence of genetic variability among the 36 genotypes for all the traits studied. Genotype × location interactions were significant for days to maturity, plant height, panicle length, culm length, flag leaf length, number of filled grain per panicle, number of total spikelet per panicle, days to heading, biomass yield, grain yield and harvest index. Significant differences were observed for grain yield that ranged from 6759.00 to 2886.00 kg ha-1 with overall mean value of 5370.0 kg ha-1. Higher PCV and GCV values were exhibited by plant height, culm length, number of unfilled grain per panicle, biomass yield and grain yield, which suggests the possibility of improving this trait through selection. The highest heritability was recorded for culm length followed by plant height, biomass yield and panicle length. High to medium heritability coupled with high GCV and high genetic advance as percentage of means were exhibited for plant height, biomass yield, grain yield and number of unfilled grain per panicle. High genetic advances as percent of means were recorded by plant height, culm length, biomass yield, grain yield and number of unfilled grain per panicle.

Relevant Publications in Advances in Crop Science and Technology