Finite Element Method of Stability Analysis and Stabilization of Gully Erosion Slopes - A Study of the Otampa Gu

Arinze EE *,Okafor CC

Abstract

The stability of the gully erosion slopes in this work is analyzed using PLAXIS2D (a finite element based program) and checked with Slide of Rocscience Inc utilizing the Ordinary Method of Slices, Bishop’s Method and GLE/ Morgensten-Price Method. The finite element program uses the phi-c reduction method. The phi-c method is based on the reduction of the shear strength (c) and the tangent of friction angle (tan∅) of the soil. Results from laboratory tests of the soil samples have geotechnical properties which by all indications denote the problematic nature of the slope as the soil samples had very low plasticity and the cohesion intercept are considerably low. The soil is classified as Clayey Sand. The various slope sections have been analyzed and apparently, slope sections A, B, and C are unsafe as they possess low factors of safety in the range of 0.6 – 0.8. Generally, a study of the erosion site shows that the area is poorly drained as the entire area has only one drainage channel leading to the main erosion gully. Recommendations have been proffered which includes retaining structure, cement grouting and more drains to improve the drainage around the eroding area which leads to the gully.

Relevant Publications in Civil & Environmental Engineering