Research Article
Joris Proost, Geneviè
Abstract
In this work, we report for the first time on the successful selection and identification of peptide motives that exhibit a specific affinity to anodic alumina surfaces when multivalently displayed on a filamentous phage. It was also demonstrated that, for a selected phage clone, a chemical functionalisation (biotinylation) of the bacteriophage does not deteriorate its specific affinity to anodic alumina. Moreover, such biotinylated bacteriophages, after being immobilised onto an anodic alumina surface, have been shown to allow for the quantitative detection of streptavidine using an ELISA protocol. These results are believed to pave the way for shifting the surface design of integrated biosensing devices from traditional, chemically modified synthetic surfaces, like silane-based self-assembled monolayers, towards molecular linkers based on genetically engineered polypeptides.