Evaluation of Adding Carbon Tetrachloride as Propulsion to the Thermal Cracking Reactor due to the Amount of Formed Coke in Different Coil Outlet Temperatures (COT)

Afshin Davarpanah

Abstract

Nowadays, polyvinyl chloride (PVC) was the most usual plastic. Thereby, to make polyvinyl chloride its monomer must be produced firstly that was called vinyl chloride (VCM). It was severely endothermic reaction that was done in an ethylene dichloride ethylene dichloride thermal cracking reactor within temperature range of 680-758°K and pressure range of 2500000 Pascal, thus this cracking reaction changed into hydrochloric acid and VCM. In production unit, monomeric chloride had the main and principal role as the core of the process of thermal cracking that occurs in the furnace. Increasing of wall temperature cause to boil gas mixture and causing pyrolysis reactions. Regarding to the simulation results showed that number of pyrolysis produced composition have maximum concentration in the length of reactor that illustrated these compositions participated in secondary reactions. Furthermore, by increasing the amount of coil outlet temperatures, the amount of formed coke will be increased. If Carbon tetrachloride considered as the chlorine radicals, it has an important role as the motivator in the cracking procedures, radicals causing an enhancement in VCM production.

Relevant Publications in Journal of Thermodynamics & Catalysis