Effect of Tunnel Structure of β-TCP on Periodontal Repair in Class III Furcation Defects in Dogs

Akira Saito, Emiko Saito, Y

Abstract

Background: The pore characteristics of bone graft materials play an important role in bone regeneration. Previous studies have reported that a pore size of 100 ~ 400 μm effectively induces vascular invasion and cell population within the materials. Many graft materials used recently have macropore (200 ~ 600 μm) or micropore (0.1 ~ 1 μm) structures. We devised a bone material with a tunnel pipe structure and pore size of 300 μm. The present study evaluated periodontal healing following implantation of this new bone graft material in furcation class III defects. Methods: Thirty mandibular premolar teeth of five beagles were used. After class III furcation defects were surgically created, each furcation was randomly treated with: 1) β-TCP with a tunnel pipe structure (tunnel group) (n=10); 2) Granular β-TCP (granular group) (n=10); and 3) No implant material (control group) (n=10). The dogs were sacrificed 8 weeks post-surgery and healing was evaluated histologically. Results: In the tunnel group, down growth of junctional epithelium was significantly less than that in the other two groups (P

Relevant Publications in Bioceramics Developments and Applications