Comparative Analysis of Strain Fields in Step-graded Buffers of Different Design, based on InxAl1-xAs Ternary Solutions

Aleshin AN, Bugaev AS, Ruban O

Abstract

Two hetero structures with the step-graded buffers of different design grown on (001) GaAs substrates by molecular beam epitaxy were employed to reveal applicability of an extension of phenomenological approach developed for the description of strain relief in single layer hetero structures to multilayer thin film systems. Difference in the design of buffers provided to the formation of dislocation free layers of different thickness. The determination of the residual strains in the epitaxial layers was done using reciprocal space mapping performed with a tripleaxes X-ray diffractometer Smart Lab 9 kW and the following processing of data obtained within the linear theory of elasticity. It was established that, despite the different design of buffers the character of strain spatial distributions in them was similar. It gives possibility to attract a phenomenological rule to describe the strain relief in the final constructive elements of both hetero structures. A correction for a work hardening in the phenomenological rule governing the strain relief in single layer hetero structures was performed.

Relevant Publications in Structural Chemistry & Crystallography Communication