Research Article
Ida Dulinska-Molak*, Jakub
Abstract
Bone tissue has a composite nature given by a highly complex and well-harmonized structure of organic and inorganic components on the microscale, macroscale and nanoscale. Thus, biodegradable composite scaffolds made of poly (ε-caprolactone) urethane (PCL_PUR) porous matrix and calcium carbonate (CaCO3) were developed and studied for bone tissue engineering. The aim of this work was to examine the structure of new polyurethane/calcite composites. Micro-computer tomography (μ-CT) and image analysis enabled 3D visualization and quantification of the porosity, wall thickness and internal pore size distribution. The fabricated porous polyurethane composites exhibited porosity >70% with a pore size not exceeding 450 μm and wall thickness about of 50 μm in size. The mechanical properties of the foams were evaluated using Dynamic Mechanical Analysis (DMA). In-vitro bioactivity tests in simulated body fluid (SBF) were carried out and the marker of bioactivity, e.g. formation of surface bone-like apatite layers upon immersion in SBF, was investigated. Our results indicated that PUR/calcite scaffolds were more activity then PUR scaffolds and possessed the function to enhance cell proliferation and differentiation, and might be used as bone tissue engineering materials.