Apocynin Exerts Dose-Dependent Cardioprotective Effects by Attenuating Reactive Oxygen Species in Ischemia/Reperfusion

Qian Chen, Woodworth Parker

Abstract

Ischemia/reperfusion results in cardiac contractile dysfunction and cell death partly due to increased reactive oxygen species and decreased endothelial-derived nitric oxide bioavailability. NADPH oxidase normally produces reactive oxygen species to facilitate cell signalling and differentiation; however, excessive release of such species following ischemia exacerbates cell death. Thus, administration of an NADPH oxidase inhibitor, apocynin, may preserve cardiac function and reduce infarct size following ischemia. Apocynin dose-dependently (40 μM, 400 μM and 1 mM) attenuated leukocyte superoxide release by 87 ± 7%. Apocynin was also given to isolated perfused hearts after ischemia, with infarct size decreasing to 39 ± 7% (40 μM), 28 ± 4% (400 μM; p < 0.01) and 29 ± 6% (1 mM; p < 0.01), versus the control’s 46 ± 2%. This decrease correlated with improved final post-reperfusion left ventricular end-diastolic pressure, which decreased from 60 ± 5% in control hearts to 56 ± 5% (40 μM), 43 ± 4% (400 μM; p < 0.01) and 48 ± 5% (1 mM; p < 0.05), compared to baseline. Functionally, apocynin (13.7 mg/kg, I.V.) significantly reduced H2O2 by nearly four-fold and increased endothelial-derived nitric oxide bioavailability by nearly four-fold during reperfusion compared to controls (p < 0.01), which was confirmed in vivo rat hind limb ischemia/reperfusion models. These results suggest that apocynin attenuates ischemia/reperfusion-induced cardiac contractile dysfunction and infarct size by inhibiting reactive oxygen species release from NADPH oxidase.

Relevant Publications in Cardiovascular Pharmacology: Open Access