An Overview of Methods of Reduction of Vibration for Diesel Generators

Adeoye OS, Adebayo AA, Olof

Abstract

Mechanoelectrical devices will always vibrate because of several moving parts incorporated within them. When they are in operation, these machines usually have oscillatory motions around an equilibrium point. For generating sets, vibration is from the engines to the metal frame because vibration travels through mediums. Accelerometers are used to measure vibration when mounted on the generator frame where the vibratory motion is been converted into electrical signal with the use of piezoelectric accelerometer. The versatile uses of electronics make it easy to measure and analyse electrical signal. The accelerometers usually mounted perpendicular and concentric to the shaft of the rotating engine in the vertical and horizontal position. Mechanical vibrations are present in different degrees. Some vibrations are desirable, they perform useful work. Vibration is generated intentionally in component feeder, concrete compactor, eccentric grinders, ultrasonic clearing baths, rock drills and pile drivers. Excessive vibration in equipment can not only damage the equipment itself but also decrease functionality and they can cause destruction of power delivery. Minimizing vibration of generating set can both reduce the transfer of energy to building surrounding, generator equipment/component and human. This leads to longer life for generator. The rate of vibration and cost are the most important consideration before a designer can decide the methods that can effectively minimize the transmission of vibratory motion. Vibration can become a noise source. The paper discusses isolation as a means of preventing vibration from the system and damping as a means of absorbing of vibration energy from the system. Methods of reducing vibration such as elastomeric isolations, spring isolators and accelerometers are discussed.

Relevant Publications in Electrical & Electronic Systems