A New One-Dimensional Finite Volume Method for Hyperbolic Conservation Laws

Jose C Pedro , Mapundi K. Band

Abstract

In this paper, a new one-dimensional Finite Volume Method for Hyperbolic Conservation Laws is presented. The method consists in an improved numerical inter-cell flux function at the element interface. To back theoretically the method, necessary components for convergence are presented. Therefore, it is proved that the method is consistent with the P.D.E and that it is monotone with respect its variables. Moreover, to validate the approach and show its efficiency, we compute several one-dimensional test problems with discontinuous solutions and we make comparisons with traditional methods. The results show an improvement on the non-oscillatory shock-capturing properties based on the new approach.

Relevant Publications in Applied & Computational Mathematics